SEMESTER

TT

QP CODE

23MAT22

P.R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA SEM END EXAMINATIONS MAY -2024 I B.SC. MATHS HONS SUBJECT: ANALYTICAL SOLID GEOMETRY &

	<u>I</u>	MODELL .		
		250	MAX	
DATE &	07.06.2024	REG	MARKS	50
CESSION	FN	NO	· · · · · · · ·	1

SECTION-A

Answer any three questions selecting atleast one question from each part

 $3 \times 10 = 30M$

- 1. A variable plane is at a constant distance 3p from the origin and meets the axes in A, B, C. Show that the locus of the centroid of \triangle ABC is $x^{-2} + y^{-2} + z^{-2} = p^{-2}$.
- 2. Show that the equation $x^2 + 4y^2 + 9z^2 12yz 6zx + 4xy + 5x + 10y 15z + 6 = 0$ represents a pair of parallel planes and find the distance between them.
- 3. Find the length and equation of the shortest distance between the line $\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$

Part - B

- 4. Show that the plane 2x 2y + z + 12 = 0 touches the sphere $x^2 + y^2 + z^2 2x 4y + 2z 3 = 0$ and find the point of contact.
- 5. Find the limiting points of the coaxal system of spheres determined by $x^2 + y^2 + z^2 + 4x 2y + 2z + 6 = 0$, $x^2 + y^2 + z^2 + 2x 4y + 2z + 6 = 0$
- 6. Find the equation to the right circular cone whose vertex is (1, -2, -1), axis the line $\frac{x-1}{3} = \frac{y+2}{4} = \frac{z+1}{5}$ and semi vertical angle 60° .

SECTION-B

Answer any four questions.

 $4 \times 5 = 20M$

- 1. Find the equation of the plane through the points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9.
- 2. Find the image of the point (1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$
- 3. Find the pole of the plane x y + 5z 3 = 0 with respect to the sphere $x^2 + y^2 + z^2 = 9$.

4. Show that the plane 2x - 2y + z + 12 = 0 touches the sphere $x^2 + y^2 + z^2 - 2x - 4y + 2z - 3 = 0$.

- 5. Show that the spheres $x^2 + y^2 + z^2 + 6y + 2z + 8 = 0$, $x^2 + y^2 + z^2 + 6x + 8y + 4z + 20 = 0$ are orthogonal.
- 6. Show that the general equation of the cone of the second degree which pass through coordinate axes is fyz + gzx + hxy = 0.
- 7. Find the enveloping cone at the (1, 1, 1) and generators touching the sphere $x^2 + y^2 + z^2 2x + 4z 1 = 0$